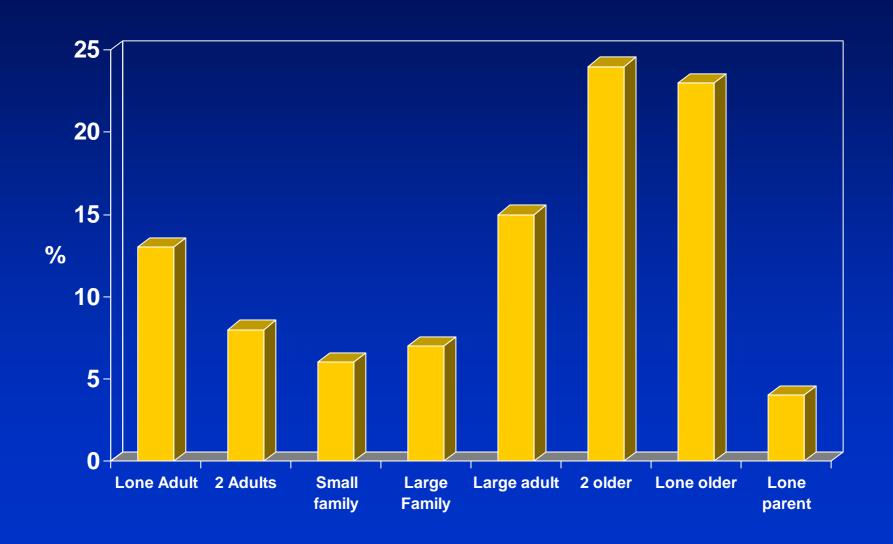
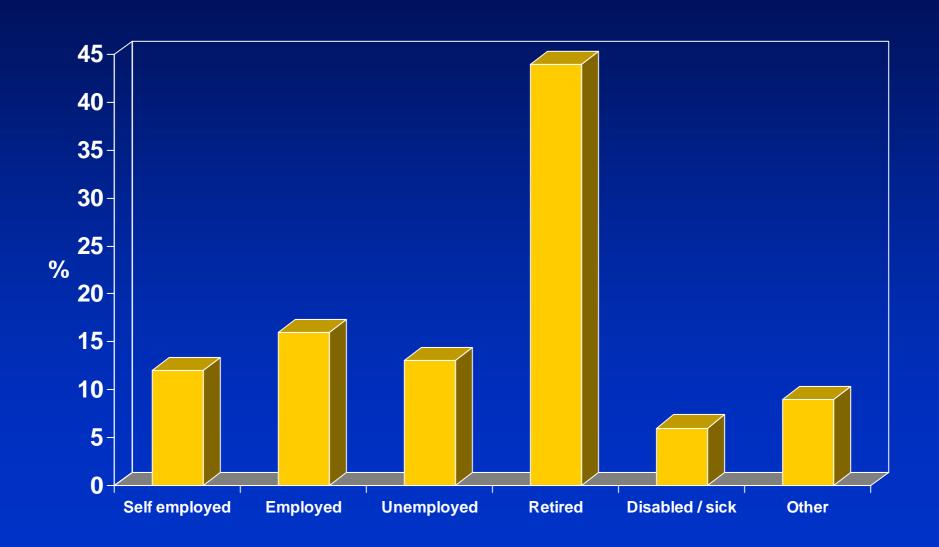

Health and Energy Efficiency

AP Passmore Reader, Geriatric Medicine, Queen's University, Belfast


Content

- Health issues
- Sequelae (Services)
- Detection
- Benefits of improvement
- Future challenges


N Ireland Fuel Poverty: Age of Household Reference Person (2004)

N Ireland Fuel Poverty: Household Type (2004)

N Ireland Fuel Poverty: Employment Status (2004)

Attempts to Overcome Fuel Poverty

Health Issues

- Respiratory illness
- Increased blood pressure
- Cardiovascular diseases
- Worsening arthritis
- More frequent accidents
- Social isolation
- Mental health
- Adverse effects on childrens education and nutrition
- Winter morbidity and mortality

Sequelae

Increased Health (and Social Services) Utilization

 Poor housing costs NHS £2 billion per year (Evans et al. J Epidemiol & Comm health 2000;54:677-86)

 Cold related illness costs NHS in N Ireland £21 million per year (NEA 2004)

Need to show cost effectiveness of interventions

Detection

- Doctors
- Social Services
- Home helps / statutory staff
- Voluntary Sector
- Community groups

Benefits of Improvement

"No tradition of the systematic evaluation of the health impact of housing design or innovation"

Lowry BMJ 1991

Gilbertson et al. Grant recipients views of Englands Home Energy Efficiency Scheme. Social Science and Medicine 2006; 63: 946-56

Physical Health	%
Improved comfort	67.3
Easing of chronic conditions	24.5
Less minor illness	20.4

Mental Health

More relaxed and content	24.5
Feeling better	55.1
Mood and temperature	26.5

"Living rather than surviving"

Gilbertson et al. Social Science and Medicine 2006; 63: 946-56

"the walls were so damp and cold" fuel poverty and ill health in Northern Ireland: results from a housing intervention

Shortt & Rugkasa Health and Place 2007;13:99-

• 2000-2002

Central heating installation

Pre and post intervention surveys

Rooms suffering from Condensation, Mould or Damp

Pre	Post
1.51	1.09 (NS)
2 13	0.65 (p<0.001)
2110	σιου (ρ τοιου ι)
2.39	0.43 (p<0.001)
1.87	0.87 (p<0.05)
	1.512.132.39

Shortt & Rugkasa Health and Place 2007;13:99-110

Prevalence of specific illnesses, pre and post intervention

	Total intervention		No intervention			
	Pre (%)	Post (%)	_	Pre (%)	Post (%)	_
Angina	17.4	4.3	ns	0.0	1.8	ns
Arthritis/rheumatism	34.8	8.7	p < 0.05*	10.9	5.5	ns
Asthma	15.1	4.3	ns	10.9	6.5	ns
Chest infections/	26.0	13.0	ns	1.8	7.3	ns
bronchitis						
Pneumonia/hypothermia	2.1	2.1	ns	0.0	0.0	ns
Stress/mental illness	10.8	4.3	ns	1.8	14.5	p < 0.05*
Other	28.2	4.3	p < 0.05*	3.6	7.2	ns
Mean number of illnesses per head	1.43	0.91	p < 0.05* p < 0.05**	0.17	0.23	ns

Shortt & Rugkasa Health and Place 2007;13:99-110

Health Service Utilization

Visits to GP, A & E, other hospital services

Total intervention 2.5/head to 1.3 /head

No difference in non intervention group

Winter Morbidity

- 25,000 people, > 65 years, Newham 1993-97
- Emergency hospital episodes for all respiratory diagnoses
- Fuel poverty index
- Supporting evidence for a relationship between energy inefficient housing and winter respiratory disease among older people
- Rather than general poverty, buildings likely to produce cold indoor temperatures are key to ill health when combined with a poor ability to afford heating.

Excess Winter Mortality

William Farr 1838-1841

Excess Winter Mortality 3,100 19% 31,000

Temperature, Deprivation and Winter Mortality

Coronary, stroke and all cause winter mortality linked to:

 Households with no central heating and one or more residents of pensionable age

Not:

- Economically active
- Limiting long term illness
- One or more residents of pensionable age
- Private rented and one or more residents of pensionable age
- Deprivation index (Carstairs)
 Aylin et al. Int J Epidemiol 2001;30:1100-1108

Healy JD. J epidemiol Community Health 2003;57:784-9

Table 5 Coefficient of seasonal variation in mortality and domestic thermal efficiency in EU-13

	csvm	Cavity wall insulation (% houses)	Roof * insulation (% houses)	Floor * insulation (% houses)	Double glazing (% houses)
Austria	0.14	26	37	11	53
Belgium	0.13	42	43	12	62
Denmark	0.12	65	76	63	91
Finland	0.10	100	100	100	100
France	0.13	68	<i>7</i> 1	24	52
Germany	0.11	24	42	15	88
Greece	0.18	12	16	6	8
Ireland	0.21	42	72	22	33
Netherlands	0.11	47	53	27	78
Norway	0.12	85	77	88	98
Portugál	0.28	6	6	2	3
Sweden	0.12	100	100	100	100
UK	0.18	25	90	4	61

1988-1997

"High seasonal mortality could be reduced through improved protection from the cold indoors, increased public spending on healthcare and improved socioeconomic circumstances"

Healy JD. J Epidemiol Community Health 2003;57:784-9

Health and Energy Efficiency

Not all Fuel Poverty / Energy Insufficiency

Health service / delivery related factors

Socioeconomic factors

Future Challenges

Awareness

Health and Social Care Staff

Single Assessment Process?

Maheswaran et al. Public Health 2004;118:167-176

- South Yorkshire Coalfields HAZ
- Deaths 1981-1999
- Emergency hospital admissions 1990-1999
- Excess mortality ratios:

 Respiratory disease 	1.64
 Cardiovascular disease 	1.23
 Other diseases 	1.09
 Excess winter hospital admission ratio 	1.69

- Increases with age
- No link with social deprivation

Stewart et al. heart Failure in a cold climate. JACC 2002;39:760-6

- > 75 years 15-18% higher than average admissions
- 20% due to respiratory disease