Optimising investment in FIT and RHI technology

East Midlands CAN Conference 8th December 2011

Tom Vosper E: <u>tom.vosper@climate-consulting.co.uk</u> T: 020 8633 9801

W: <u>www.climate-consulting.co.uk</u>

Contents

- About Climate Consulting
- Feed in Tariff
- Renewable Heat Incentive
- Optimising your investments
- Activities & Case Studies

Climate Consulting Services

Housing Stock

- Strategy development
- Scheme audits
- PV consultancy
- Energy modelling
- Project management
- Planning and architectural support
- Post occupancy monitoring
- Finance/business model development

New Build Schemes

- Code for Sustainable Homes
- BREEAM office, multi-residential, health care and education
- Low and zero carbon technology appraisal
- Energy modelling (SAP, SBEM, PHPP)
- PassivHaus Design
- Masterplanning
- Post-occupancy Monitoring

Transport Services

• Travel planning, smarter driving, fleet reviews, strategy & policy development, bespoke consultancy

Detailed EE & RE audits
 Installation management – tendering, planning, building control
 Site manager & bursar energy training
 Lessons and assemblies
 Electrical monitoring and voltage optimisation
 Energy management programmes

Schools & Commercial Stock

- Evidence bases for sustainability policies
- Sustainability expertise for development control throughout planning process
- Training planning, policy & building control staff in current legislation, technologies and appraisal methods

Background to the FIT

- The Feed in Tariff came into effect in April 2010 giving homeowners and organisations the opportunity to gain financially in three ways:
 - Generation tariff paid on all electricity generated (rates vary with technology and scale of system)
 - Export tariff paid on all electricity exported to the grid (3.1p/kWh fixed rate or option to sell electricity on the open market)
 - Fuel bill savings (obviously applicable to the amount of electricity used on site)
- Until August 2010 Local Authorities were missing out on the export tariff because they weren't allowed to sell electricity to the grid but the government has now lifted that prohibition

- Tariffs rise with inflation
- Tariffs will degress over time
- Emergency tariff review of all >50kWp tariffs now complete
- Next tariff review April 2012

FIT – current tariffs

Energy Source	Scale	Tariff (p/kWh)	Duration (years)
Anaerobic digestion	≤250kW	14.0	20
Anaerobic digestion	>250kW - 500kW	13.0	20
Hydro	≤15 kW	20.9	20
Hydro	>15 - 100kW	18.7	20
Micro-CHP	<2 kW	10.5	10
Solar PV	≤4 kW new	37.8	25
Solar PV	≤4 kW retrofit	43.3	25
Solar PV	>4-10kW	37.8	25
Solar PV	>10 - 50kW	32.9	25
Solar PV	>50 - 150kW	19.0	25
Solar PV	>150 - 250kW	15.0	25
Solar PV	>250kW - 5MW	8.5	25
Solar PV	Standalone	8.5	25
Wind	≤1.5kW	36.2	20
Wind	>1.5 - 15kW	28.0	20
Wind	>15 - 100kW	25.3	20
Wind	>100 - 500kW	19.7	20

Changes to the FIT

- 1st August 2011 generation tariffs slashed for all systems over 50kWp
- Tariff bands restructured in the mid-level
- 31st October launch of consultation on proposals for the comprehensive review...

Proposed changes to the FIT (I)

- The new proposed tariffs would apply to all new solar PV installations with an eligibility date on or after 12 December 2011.
- Post 12.12.2011 installations would receive the current tariff before moving to the lower tariffs on 1 April 2012.
- Consumers who already receive FITs will see their existing payments unchanged.
- Those with an eligibility date on or before 12 December will receive the current rates for 25 years.
- The eligibility date of a project is based on it being commissioned (in working order) and having its request for accreditation received by a FIT licensee (schemes up to 50kWp) or Ofgem (more than 50kWp).

Proposed changes to the FIT (II)

How aggregation is expected to work with the current review as it stands is:

- Currently the total PV system would not be aggregated in size therefore each system would get the current generation tariff if installed and commissioned before the 12.12.11.
- If installed after the 12.12.11 the system would get the proposed tariff
- If installed after the 01.04.12 the system would get the aggregate tariff rate which is 80% of the proposed tariff

FIT – pr	What do returns a	CLIMATECONSULTING			
Band (kW)	Current generation tariff (p/kWh)	Proposed generation tariff (p/kWh)	Percentage Reduction (%)	April 2012 Aggregate Tariff (p/kWh)	Aggregate tariff reduction from current (%)
≤4kW (new build)	37.8	21	44%	16.8	56%
≤4kW (retrofit)	43.3	21	52%	16.8	61%
>4-10kW	37.8	16.8	56%	13.44	64%
>10-50kW	32.9	15.2	54%	12.16	63%
>50-100kW	19	12.9	32%	10.32	46%
>100-150kW	19	12.9	32%	10.32	46%
>150-250kW	15	12.9	14%	10.32	31%
>250kW-5MW	8.5	8.5	0%	6.8	20%

Likely returns

CLIMATECONSULTING

		CAPEX	lnverter cost (£)	Current		Proposed			Aggregated (01.04.2012)			
				Tariff (p/kW)	25 Year NPV (£)	IRR (%)	Tariff (p/kW)	25 Year NPV (£)	IRR (%)	Tariff (p/kW)	25 Year NPV (£)	IRR (%)
Size of PV (kWp)	System output used on site (%)	Ex VAT (£)	[Yr10 & 20]									
10	50%	-30,000	-1,800	37.80	44,850	(14.60)	16.80	6,828	5.47	13.44	744	3.72
									\smile			\sim
50	50%	-130,000	-7,800	32.90	204,589	15.11	15.20	44,354	6.38	12.16	16,833	4.64
4	100%	-14,000	-1,120	43.30	22,104	15.16	21.00	5,954	7.03	16.80	2,912	5.30
10	100%	-30,000	-1,800	37.80	52,878	16.22	16.80	14,856	7.50	13.44	8,773	5.95
50	100%	-130,000	-7,800	32.90	244,731	16.96	15.20	84,496	8.61	12.16	56 <i>,</i> 975	7.05

- Installers expect supply prices to continue falling
- Installers are proposing to drop their prices to compensate the loss in Feed in Tariff
- DECC may change the cut off date from 12/12/11 due to legal complications

Case Study: PV analysis for Epping Forest

- Housing stock list of addresses
- GIS and GoogleEarth Pro used to locate properties, measure roof space, orientation, pitch, shading etc.
- System sizing and output calculations for each property
- Cash flow and carbon analysis conducted for each property
- Database of results created to allow Epping Forest to define the terms of their investment

Model looks something like this...

CLIMATECONSULTING

											CLIMATE		
A	В	С	D	E	F	G	Н	I	J	k	κ	L	
1													
2	1. Site				3. Tariff							Present	val
3	Annual elec consumption		kWh		FIT tariff	P۱	√ >4-10kW					riesent	vai
4	Percentage used in day	50%						£/kWh		15.000 -			
5	Percentage used in night	50%			Export tariff		0.03	£/kWh		,			
6	Unit price in day		£/kWh		4. Financial V	/ariables				10,000 -			
7	Unit price in night	0.11	£/kWh		Inflation		2.5%			· · · ·			
8	2. System - costs & outputs				Discount rate (5.00%			5.000 -			
9	PV system size		kWp		Discount rate (3rd party)	2.50%	IRR Calc	ulator	· · · ·			
10	System output per kWp (kWh)	850.0								- +		-	
11	Bulk purchase discount?	15%			Fossil / electric		5.0%			£			-
12	System CAPEX (ex.VAT)	- 18,700			VAT rate applie	ed	5.0%			-5,000 -			
13	System CAPEX (inc. VAT)	- 19,635			Client VAT regi	istered?	Yes	Ex. VAT					
14	Inverter costs	- 1,496			5. Carbon fac					-10,000 -	/		
15	Predicted Yr 0 output	4250	kWh		Carbon factor (kgCO2/kWh)	0.529	kgCO2/kWh					
16	% used on site	80%			Carbon offset (Yr1)	2,248	kg		-15,000 -			
17	Units used on site	3400			Total carbon of	fset (over 25 yrs	50,379	kg					
18	Units exported	850			£capex/tCO2 s	aved (over 25 y	-371	£/t		-20,000			
19	Annual maintenance charge	0.50%			£NPV/tCO2 sa	ved (over 25 yrs	241	£/t			1 2 3 4 5	6789	9 11
20										,	Years	-Buy F	V v
21											lears	Duy.	• •
22	Buy your own PV model - cash	flow											
23	Year	0	1	2	3	4	5	6	7		8	9	,
24	Percentage of Yr 0 system output	100%	98.4%	97.6%	96.8%	96.0%	95.2%	94.4%	93.6%		92.8%	92.0%	5
25	Costs												
26	CAPEX + replacementn inverters	- 18,700											
27	Annual maintenance	- 94	- 96	- 98	- 101	- 103	- 106	- 108	- 111	-	114	- 117	
28	Total costs	- 18,794	- 96	- 98	- 101	- 103	- 106	- 108	- 111	-	114	- 117	1
29	Income												
30	Feed in Tariff	1,607	1,620	1,647	1,675	1,702	1,730	1,759	1,787		1,816	1,846	
31	Export tariff	26	26	26	27	27	27	28	28		29	29	
32	Electricity bill savings 🔽	289	299	311	324	337	351	366	381		396	412	
33	Total income	1,921	1,945	1,984	2,025	2,067	2,109	2,152	2,196		2,242	2,288	
34	Profit / loss	- 16,873	1,849	1,886	1,924	1,963	2,003	2,044	2,085		2,128	2,171	
35	Present value of profit / loss	- 16,873	1,761	1,711	1,662	1,615	1,570	1,525	1,482		1,440	1,399	
36	Present value of cashflow	- 16,873	- 15,112	- 13,401	 11,739 	- 10,123	- 8,554	 7,029 	- 5,547	-	4,107	- 2,707	-
37	NET PRESENT VALUE	12,145											
38													
39	3rd party funding model - cash	flow											
40	Year	0	1	2	3	4	5	6	7		8	9	,
41	Income												
42	Electricity bill savings	289	299	311	324	337	351	366	381		396	412	

Background to the RHI

- Previous grant support mechanisms (e.g. Clear Skies, LCBP, BECG)
- RHI provides revenue based payments not capital support (except RHPP – see next slide)
- No export tariff
- This leaves two income streams from renewable heat projects:
 - Fossil fuel savings
 - The relevant RHI tariff

Strands of RHI

- Non-domestic RHI should be live very soon (this scheme includes communal residential systems)
- 2. Domestic (individual) RHI should launch in Autumn 2012 (with Green Deal)

3. RHPP

- a) The Renewable Heat Premium Payments (RHPP) are basically a grant for individual domestics and are available now
- b) There was a specific Social Housing RHPP call (deadline 15th Sept 2011)

Points to note on RHI

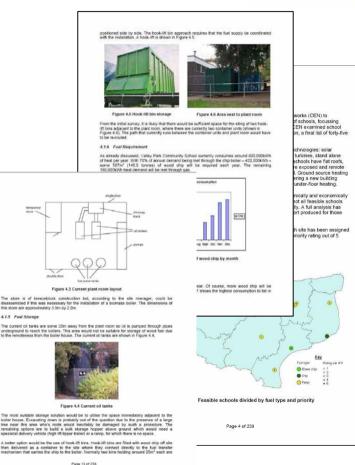
- 1. Again RPI linked tariffs
- 2. Generation tariffs paid for 20 years for all technologies
- 3. Non-domestic RHI payments based on heat meter readings
- Domestic RHI may use metering, or may "deem" heat requirement, or another method altogether (details not yet released)

RHPP table

Technology	Level of support (per unit)
Solar thermal	£300
Air source heat pumps	£850
Biomass boilers	£950
Ground source heat pumps	£1250

RHI tariff table (non-domestic)

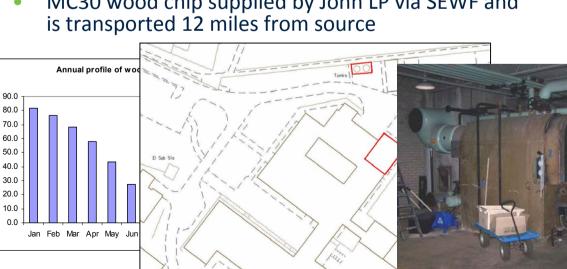
Levels of support

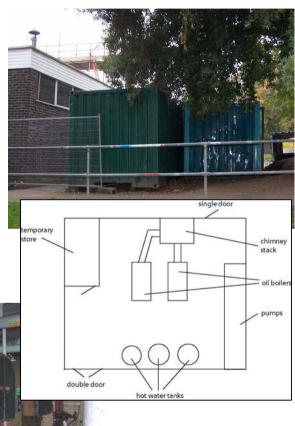

Tariff name	Eligible technology	Eligible sizes	Tariff rate (pence/ kWh)	Tariff duration (Years)	Support calculation
Small commercial biomass	Solid biomass including solid	Less than 200 kWth	Tier 1: 7.9 Tier 2: 2.0		Metering. Tier 1 applies annually up to the Tier Break, Tier 2 above the Tier Break. The Tier Break is:
Medium commercial biomass	biomass contained in Municipal Solid Waste and CHP	200 kWth and above; less than 1000 kWth	Tier 1: 4.9 Tier 2: 2.0	20	installed capacity x 1,314 peak load hours, i.e.: kWth x 1,314
Large commercial biomass		1000 kWth and above 1.0			Metering
Small commercial heat pumps	Ground-source heat pumps; Water-source	Less than 100 kWth	4.5	20	
Large commercial heat pumps	heat pumps; deep geothermal	100 kWth and above	3.2	20	Metering
Solar collectors	Solar collectors	Less than 200 kWth	8.5	20	Metering

Case Study: Kent Schools Biomass Appraisal

CLIMATECONSULTING

- 1,000 schools assessed in deskbased study
- 45 schools chosen for site visit and further assessment
- 22 schools found to be feasible for wood fuel heating with full technical and financial report for each
- Equates to a potential 1,800 tonnes of CO₂ savings p.a.
- Creating demand for 1,400 tonnes of wood fuel p.a.
- 3 schools now installed (500kW chip boiler, 150kW chip boiler, 150kW pellet boiler)
- Many schools feasible for other renewable energy technologies (PV, wind, GSHP etc.)


Valley Park Community School, Maidstone



- On-site discussions with Head and Site Manager already keen on renewable energy
- Survey of school and plant room
- Completion of individual report, recommending 500kW wood chip boiler with hook-lift bin delivery system
- LCBP and EDF grants secured

Cubic metres

- System installed by Econergy in August 2008 and working well
- MC30 wood chip supplied by John LP via SEWF and is transported 12 miles from source

Valley Park: Grants vs RHI

- CAPEX of ~£450k
- Gas / oil install would have been ~£250k anyway so £200k extra
- Total grant support of about £100k so £100k additional cost to client
- Fuel savings of ~ 700,000 x 0.025 = £17,500 p.a.
- Maintenance costs of ~£3,000 p.a.
- Running cost savings of £14,500 without RHI
- ~7 year payback on extra investment and lifetime savings of ~£190k

Installed before 15/7/09 so they will not get RHI but if they were installing today:

- No grant support so £200k additional cost to client
- Same £14,500 revenue from fuel saving minus maintenance
- RHI payments of: (500 x 1314 x 0.049) + (500 x 100 x 0.020) = £33,193 p.a.
- Overall revenue and savings of ~£47,700
- ~4 year payback on extra investment and lifetime savings of ~£954k

How can you optimise your investments?

- Optimising financial return or CO2 saving?
- Using the right technologies for our situation
 - Technologies higher capex, lower risk, lower maintenance or lower capex, higher risk, higher maintenance
 - Combination of technologies
 - The right buildings or situations
- Sizing technologies shrewdly look at where the tariff levels change
- Bulk purchase discounts
 - Own estate
 - Combining with other 'customers'
 - Using a framework
- Achieving best financial terms
 - Size of investment
 - Investment risk
 - Security
- For electricity generation technologies, optimising onsite / offsite usage
- What about energy efficiency?

Activity 1 – Income from a PV system

- 40m² roof area (roughly 5kWp PV system)
- Optimal orientation & pitch and no shading
- Costing £15,000
- 50% of electricity is used onsite
- 13p/kWh paid for peak electricity
- What is the income?
- What is the simple payback?

Activity 1 – Income from a PV system

- 40m² roof area (roughly 5kWp PV system)
- Optimal orientation & pitch and no shading
- Costing £15,000
- 50% of electricity is used onsite
- 13p/kWh paid for peak electricity
- What is the income?
- What is the simple payback?
- 5 kWp x 850 = 4,250 kWh electricity generated (yr 1)
- Generation tariff income: 4,250 x 0.378 = £1,607
- Export tariff income: 4,250 x 50% x 0.031 = £66
- Bill saving: 4,250 x 50% x 0.13 = £276
- Total "income" = £1,949 (in the first year)
- Simple payback is just: £15,000 / £1,949 = 7.7 years

Question - What factors have we ignored?

What if we use proposed tariff? (£714 using proposed 16.8p tariff) (Export tariff unchanged) (Bill saving unchanged) (Total down to £1,056) (Payback up to 14.2 years)

Discussion topics

- 1. What effect would adding a solar thermal system have to the finances of the project?
- 2. How can we optimise our investment through choosing the right business model?
- 3. How can we optimise the return from a biomass system?

<u>What effect would adding a solar thermal system have</u> <u>to the finances of the project?</u>

- Introducing ST will limit (reduce) the size of the PV system (because the roof isn't any bigger)
- The £/kWp goes up as the PV system size drops
- But the ST system probably won't be huge because it will be capped by hot water demand
- Potential to take advantage of ST being slightly less fussy about shading

How can we optimise our investment through choosing the right business model?

- What skills & expertise do you have in house?
- Cost of finance internal / external?

How can we optimise the return from a biomass system?

- Looking at tariff bands
- Considering the tier 1 operation
- How can you "export" heat? Heat network

Optimising investment in FIT and RHI technology

SW CAN Conference 28th September 2011

Tom Vosper E: tom.vosper@climate-consulting.co.uk T: 020 8633 9801 W: www.climate-consulting.co.uk