

Contents

- About CEN
- Issues and growth
- Policy framework
- The RHI
- Example installation

CEN Consulting

- An impartial environmental consultancy
- Established in 1997, CEN have a 13 year track record of successful project delivery in:
 - Fuel poverty
 - ESTac
 - Sustainable energy and micro-generation
 - Sustainability consultancy energy, transport, water and waste
- 20 technical experts, and the largest installer network in the UK
- In 2010, CEN merged with Climate Energy

CEN / Climate Consulting – Summary of services

Housing Stock

- Strategy development
- Scheme audits
- PV consultancy
- Energy modelling
- Project management
- Planning and architectural support
- Post occupancy monitoring
- Finance/business model development

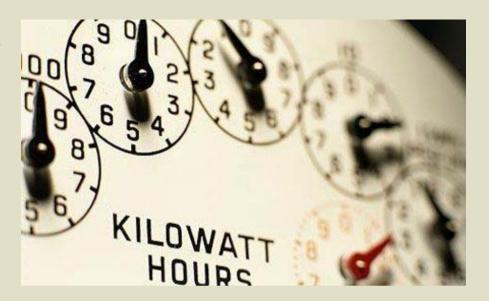
Schools & Commercial Stock

- Detailed EE & RE audits
- Installation management tendering, planning, building control
- Site manager & bursar energy training
- Lessons and assemblies
- Electrical monitoring and voltage optimisation
- Energy management programmes

New Build Schemes

- Code for Sustainable Homes
- BREEAM office, multi-residential, health care and education
- Low and zero carbon technology appraisal
- Energy modelling (SAP, SBEM, PHPP)
- PassivHaus Design
- Masterplanning
- Post-occupancy Monitoring

Planning & Policy Support


- Evidence bases for sustainability policies
- Sustainability expertise for development control throughout planning process
- Training planning, policy & building control staff in current legislation, technologies and appraisal methods

Transport Services

 Travel planning, smarter driving, fleet reviews, strategy & policy development, bespoke consultancy

FIT and the opportunity

- The Feed in Tariff came into effect in April 2010 giving homeowners and organisations the opportunity to gain financially in three ways:
 - Generation tariff paid on all electricity generated (rates vary with technology and scale of system)
 - Export tariff paid on all electricity exported to the grid (3.1p/kWh fixed rate or option to sell electricity on the open market)
 - Fuel bill savings (obviously applicable to the amount of electricity used on site)

- Until August Local Authorities were missing out on the export tariff because you weren't allowed to sell electricity to the grid but the government has now lifted that prohibition
- Tariffs rise with inflation
- Tariffs will degress over time
- Emergency tariff review of all >50kWp tariffs now underway
- Tariff review April 2012

FIT – current tariffs

Energy Source	Scale	Tariff (Apr 2011 – Mar 2012) (p/kWh)	Duration (years)	
Anaerobic digestion	Up to 500kW	12.1		
Anaerobic digestion	>500kW	9.4	20	
Hydro	Up to 15 kW	20.9	20	
Hydro	>15 - 100kW	18.7	20	
Hydro	>100kW - 2MW	11.5	20 20 10	
Hydro	>2MW - 5MW	4.7		
Micro-CHP	<2 kW	10.5		
Solar PV	Up to 4 kW new	37.8	25	
Solar PV	Up to 4 kW retrofit	43.3	25 25 25 25 25 25 20	
Solar PV	>4-10kW	37.8		
Solar PV	>10 - 100kW	32.9		
Solar PV	>100kW - 5MW	30.7		
Solar PV	Standalone	30.7		
Wind	Up to 1.5kW	36.2		
Wind	>1.5 - 15kW	28.0	20	
Wind	>15 - 100kW	25.3	20	
Wind	>100 - 500kW	19.7	20	
Wind	>500kW - 1.5MW	9.9	20	
Wind	>1.5MW - 5MW	4.7	20	
Existing generators transferred for	9.4	to 2027		

Renewable Heat Incentive

- Previous grant support mechanisms (e.g. Clear Skies, LCBP, BECG)
- RHI provides revenue based payments not capital support (like the FIT)
- No export tariff
- This leaves two income streams from renewable heat projects:
 - Fossil fuel savings
 - The relevant RHI tariff
- Based upon metered heat produced (there was some previous discussion about heat being 'deemed' and this may still be the case for domestic schemes)

RHI tariff tables

Tariff name	Eligible technology	Eligible sizes	Tariff rate (p/kWh)		
Cmall biomaga	Solid biomass; Municipal Solid Waste (incl. CHP)	Loop than 200 MWth	Tier 1: 7.6		
Small biomass		Less then 200 kWth	Tier 2: 1.9		
Medium biomass		200 kWth and above;	Tier 1: 4.7		
		less than 1000 kWth	Tier 2: 1.9		
Large biomass		1000 kWth and above	2.6		
Small ground source Large ground source	Ground-source heat pumps;	Less than 100 kWth	4.3		
	Water-source heat pumps; Deep geothermal	100 kWth and above	3.0		
Solar thermal	Solar thermal	Less than 200 kWth	8.5		
Biomethane	Biomethane injection & biogas combustion, except landfill gas	Biomethane all scales; biogas < 200 kWth	6.0		

Renewable Heat Incentive

- Previous grant support mechanisms (e.g. Clear Skies, LCBP, BECG)
- RHI provides revenue based payments not capital support (like the FIT)
- No export tariff
- This leaves two income streams from renewable heat projects:
 - Fossil fuel savings
 - The relevant RHI tariff
- Based upon metered heat produced (there was some previous discussion about heat being 'deemed' and this may still be the case for domestic schemes)

- All RHI tariffs are for 20 years
- For small and medium sized biomass installations there is a twotier tariff system:
 - Tier 1 is for the first 1314 hours of full load usage
 - Tier 2 is for usage beyond this

How can we optimise our investments?

- Optimising financial return or CO₂ saving?
- Using the right technologies for our situation
 - Technologies higher capex, lower risk, lower maintenance or lower capex, higher risk, higher maintenance
 - Combination of technologies
 - The right buildings or situations
- Sizing technologies shrewdly look at where the tariff levels change
- Bulk purchase discounts
 - Own estate
 - Combining with other 'customers'
 - Using a framework
- Achieving best financial terms
 - Size of investment
 - Investment risk
 - Security
- For electricity generation technologies, optimising onsite / offsite usage
- What about energy efficiency?

Activity 1 – Income from a PV system

- 40m² roof area (roughly 5kWp PV system)
- Optimal orientation & pitch and no shading
- Costing £22,000
- 50% of electricity generated used onsite
- 10p/kWh paid for peak electricity
- What is the income?
- What is the simple payback?

Activity 1 – Income from a PV system

- 40m² roof area (roughly 5kWp PV system)
- Optimal orientation & pitch and no shading
- Costing £22,000
- 50% of electricity generated used onsite
- 10p/kWh paid for peak electricity
 - What is the income?
 - What is the simple payback?
- 5 kWp x 850 = 4,250 kWh electricity generated in year 1
- Generation tariff income: 4,250 x 0.378 = £1,606.50
- Export tariff income: 4,250 x 50% x 0.03 = £63.75
- Bill saving: 4,250 x 50% x 0.10 = £212.50
- Total "income" = £1,882.75 (in the first year)
- Simple payback is just: £22,000 / £1,882.75 = 11.7 years
- Question What factors have we ignored?
- CEN's model gives an NPV of £6,414 and an IRR of 7.89%

Α	В	С	D	Е	F	G	Н	I	J		K	L
1												
2	1. Site				3. Tariff							Present va
3	Annual elec consumption	5000	kWh		FIT tariff	P۱	/ >4-10kW					Fresent va
4	Percentage used in day	50%					0.378	£/kWh		15,000	,	
5	Percentage used in night	50%			Export tariff		0.03	£/kWh		10,000		
6	Unit price in day	0.085	£/kWh		4. Financial V	ariables/				10,000		
7	Unit price in night	0.11	£/kWh		Inflation		2.5%			.0,000		
8	2. System - costs & outputs				Discount rate (own system)	5.00%			5.000		
9	PV system size		kWp		Discount rate (3rd party)	2.50%	IRR Calc	ulator	-,		
10	System output per kWp (kWh)	850.0								_		-
11	Bulk purchase discount?	15%			Fossil / electric		5.0%			£		_
12	System CAPEX (ex.VAT)	- 18,700 [*]	£		VAT rate applie		5.0%			-5,000	_	
13	System CAPEX (inc. VAT)	- 19,635			Client VAT reg	istered?	Yes	Ex. VAT				
14	Inverter costs	- 1,496			5. Carbon fac	tors				-10,000	/ /	
15	Predicted Yr 0 output		kWh		Carbon factor (kgCO2/kWh)	0.529	kgCO2/kWh				
16	% used on site	80%			Carbon offset (2,248	kg		-15,000		
17	Units used on site	3400			Total carbon of	fset (over 25 yrs	50,379	kg				
18	Units exported	850				aved (over 25 y	-371	£/t		-20,000		
19	Annual maintenance charge	0.50%			£NPV/tCO2 sa	ved (over 25 yrs	241	£/t			1 2 3 4	56789
20						•					Years	Buy PV
21											Tears	Duy 1 V
22	Buy your own PV model - cash	flow										
23	Year	0	1	2	3	4	5	6	7			3 9
24	Percentage of Yr 0 system output	100%	98.4%	97.6%	96.8%	96.0%	95.2%	94.4%	93.6%		92.8%	92.0%
25	Costs											
26	CAPEX + replacementn inverters	- 18,700										
27	Annual maintenance	- 94	- 96	- 98	- 101	- 103	- 106	- 108	- 111	-	114	
28	Total costs	- 18,794	- 96	- 98	- 101	- 103	- 106	- 108	- 111	-	114	- 117 -
29	Income											
30	Feed in Tariff	1,607	1,620	1,647	1,675	1,702	1,730	1,759	1,787		1,816	1,846
31	Export tariff	26	26	26	27	27	27	28	28		29	29
32	Electricity bill savings 🔽	289	299	311	324	337	351	366	381		396	412
33	Total income	1,921	1,945	1,984	2,025	2,067	2,109	2,152	2,196		2,242	2,288
34	Profit / loss	- 16,873	1,849	1,886	1,924	1,963	2,003	2,044	2,085		2,128	2,171
35	Present value of profit / loss	- 16,873	1,761	1,711	1,662	1,615	1,570	1,525	1,482		1,440	1,399
36	Present value of cashflow	- 16,873	- 15,112	- 13,401	- 11,739	- 10,123	8,554	- 7,029	- 5,547	-	4,107	- 2,707 -
37	NET PRESENT VALUE	12,145										
38											_	
39	3rd party funding model - cash	flow										
40	Year	0	1	2	3	4	5	6	7			3 9
41	Income											
42	Electricity bill savings	289	299	311	324	337	351	366	381		396	412

We're going to look at three potential options:

- 1. Optimise the electricity consumption profile to use more of the system output onsite (assume 80% of electricity used on site)
- 2. Reduce system size to 4kWp (the highest FIT generation tariff bracket)
- 3. Install more systems and get a bulk purchase discount (assume we've got enough houses to negotiate a 15% discount)

The Answers – Group 1

Optimise electricity consumption profile to use more of the system output onsite (assume 80% of electricity used on site)

- Same generation tariff at Activity 1 (£1,606.50)
- Export tariff income: 4,250 x 20% x 0.03 = £25.50
- Bill saving: 4,250 x 80% x 0.10 = £340
- Total "income" = £1,972
- Simple payback is £22,000 / 1972 = 11.2 years

The Answers – Group 2

Reduce system size to 4kWp (the highest FIT generation tariff bracket)

- 4 kWp x 850 = 3,400 kWh electricity produced in year 1
- Generation tariff income: 3,400 x *0.433* = £1,472.20
- Export tariff income: 3,400 x 50% x 0.03 = £51
- Bill saving: $3,400 \times 50\% \times 0.10 = £170$
- Total "income" = £1,693.20
- Simple payback is (4/5 x £22,000) / 1693.20 = 10.4 years

The Answers – Group 3

Install more systems and get a bulk purchase discount (assume we've got enough houses to negotiate a 15% discount)

- New capital cost = £22,000 x 0.85 = £18,700
- Total "income" is same as Activity 1 (i.e. £1,882.75)
- Simple payback is £18,700 / £1,882.75 = 9.9 years

We're going to look at three potentials:

- 1. Optimise electricity consumption profile to use more of the system output onsite (assume 80% of electricity used on site)
- 2. Reduce system size to 4kWp (the highest FIT generation tariff bracket)
- 3. Install more systems and get a bulk purchase discount (assume we've got enough houses to negotiate a 15% discount)
- Keeping all factors the same and just changing:
 - Onsite usage to 80% gives an NPV of £8,184 and IRR of 8.6%
 - Reducing system to 4kWp gives £8,353 and 9.6% respectively
 - A 15% bulk discount gives £10,375 and 10.3% respectively
- Making all of these changes together gives £12,937 and 13.0% respectively!!

Discussion topics

- 1. What effect would adding a solar thermal system have to the finances of the project?
- 2. How can we optimise our investment through choosing the right business model?
- 3. How can we optimise the return from a biomass system?

Discussion – What effect would adding a solar thermal system have to the finances of the project?

- Introducing ST will limit (reduce) the size of the PV system (because the roof isn't any bigger)
- The £/kWp goes up as the PV system size drops
- But the ST system probably won't be huge because it will be capped by hot water demand
- Potential to take advantage of ST being slightly less fussy about shading

Discussion - How can we optimise our investment through choosing the right business model?

- What skills & expertise do you have in house?
- Cost of finance internal / external?

Discussion – How can we optimise the return from a biomass system?

- Looking at tariff bands
- Considering the tier 1 operation
- How can you "export" heat? Heat network

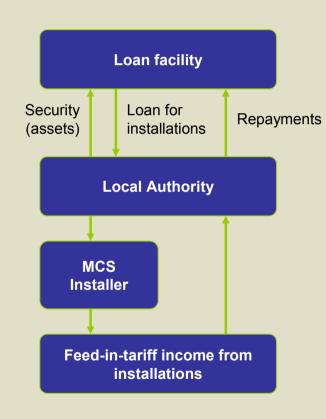
Case Study: South East Local Authority

The task:

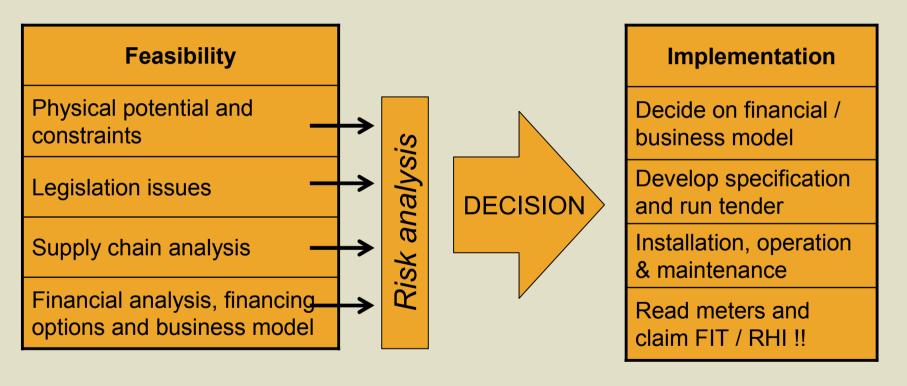
- 12,000 residential properties
- Asked CEN to assess the technical and financial case for investment in PV systems and to determine the best business model for implementation and management

The process:

- GIS analysis of all properties property type, roof area, orientation...
- Supply chain analysis looking at panel and inverter supply and install routes
- Technical analysis of different types of PV panel, output, cost and performance
- Financial and business modelling



Case Study: South East Local Authority


The results:

- >1.5kWp mono-crystalline system chosen for best value and fit with stock roof areas
- 1,615 residential properties good for installation (between SE and SW)
- Different business models assessed including:
 - External ownership and management (FIT goes to installer)
 - 100% internal ownership
 - 100% ownership (via an SPV) to ringfence project risk
 - Joint ownership of SPV with a contractor / managing agent
- Financial and cost/benefit analysis performed for each option
- Around £16m capex

So what should you do if you're interested in benefiting from the FIT / RHI?

Getting you started

Three levels of detail...

- Option 1 roof area overview analysis
- Option 2 desk review of roof area, orientation, shading etc.
- Option 3 full business plan based upon desk review of building stock

Final thoughts...

- FIT tariff level review April 2012
- Consult your planned maintenance programme
- Remember that trees grow
- Look at the fine print

Questions?

Contact details
tomvosper@cen.org.uk
020 8633 9801

